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Objective: Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) have gained
popularity as a promising cell source for regenerative medicine, but limited in vivo studies have reported
cartilage repair. In addition, the roles of MSCs in cartilage repair are not well-understood. The purpose of
this study was to investigate the feasibility of transplanting hUCB-MSCs and hyaluronic acid (HA)
hydrogel composite to repair articular cartilage defects in a rabbit model and determine whether the
transplanted cells persisted or disappeared from the defect site.
Design: Osteochondral defects were created in the trochlear grooves of the knees. The hUCB-MSCs and
HA composite was transplanted into the defect of experimental knees. Control knees were transplanted
by HA or left untreated. Animals were sacrificed at 8 and 16 weeks post-transplantation and additionally
at 2 and 4 weeks to evaluate the fate of transplanted cells. The repair tissues were evaluated by gross,
histological and immunohistochemical analysis.
Results: Transplanting hUCB-MSCs and HA composite resulted in overall superior cartilage repair tissue
with better quality than HA alone or no treatment. Cellular architecture and collagen arrangement at 16
weeks were similar to those of surrounding normal articular cartilage tissue. Histological scores also
revealed that cartilage repair in experimental knees was better than that in control knees. Immuno-
histochemical analysis with anti-human nuclear antibody confirmed that the transplanted MSCs dis-
appeared gradually over time.
Conclusion: Transplanting hUCB-MSCs and HA composite promote cartilage repair and interactions be-
tween hUCB-MSCs and host cells initiated by paracrine action may play an important role in cartilage
repair.

© 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

Articular cartilage has very limited capacity for repair, prob-
ably because of its avascular nature and its specialized structure
and composition. Current clinical strategies to repair articular
cartilage defects are implanting ex vivo-expanded autologous
chondrocytes or promoting an endogenous healing mechanism
by stimulating bone marrow (microfracture technique)1e3. How-
ever, the quality of the repaired tissue is still far from ideal
because it contains a large percentage of fibrocartilage rather
td. All rights reserved.
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than hyaline cartilage4. Therefore, a means of bringing about
predictable and durable of cartilage regeneration remains an
unmet clinical need.

Mesenchymal stem cells (MSCs) have gained popularity as a
promising source for regenerative medicine because of their ca-
pacity for self-renewal, multi-lineage differentiation potential, and
immunomodulatory5e8. MSCs can be isolated from various
tissues9e12, including the human umbilical cord. Human umbilical
cord blood-derived MSCs (hUCB-MSCs) are easy to obtain, can be
non-invasively collected, and have a good capacity for expan-
sion13,14. In addition, some evidence suggests immunomodulatory
functions and the presence of the nursing effect15,16. Based on these
findings, hUCB-MSCs may be an appropriate source of MSCs for
allogeneic transplantation.

A limited number of in vivo studies have reported cartilage
repair with hUCB-MSCs17e20. Some studies have investigated the
chondrogenic differentiation potential of hUCB-MSCs in vitro21e25.
We previously demonstrated that transplanted hUCB-MSCs and
hyaluronic acid (HA) hydrogel composite repaired articular carti-
lage remarkably well in a rat model18,19. Considering the applica-
tion of this novel cartilage regenerative option to a human clinical
trial, it was necessary to confirm the results in larger animals. In
addition, the fate of transplanted hUCB-MSCs in repair tissue of
defect area was not been investigated before. Despite growing in-
formation regarding MSCs and their use in cell-based cartilage
repair, the roles of MSCs in cartilage repair are not well-understood
and remain to be investigated.

Here, we investigated whether transplanting an hUCB-MSCs
and HA hydrogel composite resulted in favorable cartilage repair
in a rabbit model. In addition, we investigated the fate of trans-
planted hUCB-MSCs in repaired tissue in the defect area using an
antihuman nuclear antibody. We hypothesized that transplanting
an hUCB-MSCs and HA hydrogel composite would promote carti-
lage repair and would produce significantly better results
compared to no treatment or transplanting the HA hydrogel alone.
We also hypothesized that the cells would disappear as time
passed.

Methods

Isolation and culture of hUCB-MSCs

hUCB was collected from umbilical veins after neonatal delivery
by an independent cord blood bank with informed consent from
the pregnant mother. The hUCB-MSCs were prepared according to
the proper manufacturing practices at an approved cord blood
bank. The MSCs were isolated and cultured as described previ-
ously10 and donated for this animal study. The MSCs used for the
present study was selected not based on the donor characteristics
but on the characteristics of the cells. Approximately a quarter of
the UCB harvests yielded MSCs under the culture conditions10.
Among the many population of MSCs thus yielded, the MSCs
population which showed good proliferation property as well as
good potential in tri-lineage differentiation was selected for the
present study. The selection criterion was recently set with the
secretion level of TSP-2 during expansion culture based on the re-
sults of later studies26,27. The MSCs population used for the present
study was found to be adequate by the TSP-2 criterion as well. The
deliveringmother of theMSCs for this studywas 35 years old. In the
present study, we usedMSCs from a single donor to avoid the donor
related variation. Mononuclear cells were isolated by density-
gradient centrifugation at 550 � g for 30 min using
FicolleHypaque (density, 1.077 g/ml; Sigma, St. Louis, MO, USA).
The separated mononuclear cells were cultured in a-minimum
essential medium (a-MEM, Gibco BRL, Carlsbad, CA, USA)
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supplemented with 15% fetal bovine serum (FBS; HyClone, Logan,
UT, USA). The culture media was changed twice weekly. Fibroblast-
like adherent cells were observed 1e3 weeks after initial culture,
when the cells reached 80% confluency. At that point, the cells were
trypsinized (0.25% trypsin, HyClone) and resuspended in culture
medium (a-MEM supplemented with 10% FBS, 1% antibiotics). All
hUCB-MSCs used were at passage 6.

Preparation of hUCB-MSCs and the HA composite

The HA hydrogel was prepared by dissolving HA (Hyal 2000®, LG
Life Science, Daejeon, South Korea) in a-MEM. A composite of 4%
HA and hUCB-MSCs (0.5 � 107 cells/mL) was mixed thoroughly and
transplanted into the experimental knees, whereas HA alone was
used for the control knees. The cell concentration used in the
present study was selected based on the results of our previous
studies using various cell concentrations, because it showed the
best result in terms of cartilage repair. The cells expressed CD105
and CD73, but did not express CD34, CD45, CD14, or HLA-DR, as is
characteristic of the desired cell population.10

Animals

Forty healthy New Zealand white male rabbits (weight,
3.0e3.5 kg) were used in this study. All animals were obtained
1 week before the experiment and were raised in the same envi-
ronment. All procedures and experimental protocols were
reviewed and approved by the Institutional Animal Care and Use
Committee at our institution (Samsung Medical Center, Seoul, Ko-
rea). This study followed the National Institutes of Health guide-
lines regarding the care and use of laboratory animals.

In vivo transplantation

The rabbits were anesthetized, both knee joints were draped
sterilely and opened using a medial parapatellar approach, and
the patella was dislocated laterally. The intra-articular structures
were thoroughly inspected to detect any abnormalities, such as
infection or deformities. Full-thickness osteochondral defects
(3 mm in diameter and 3 mm in depth, which is a critical-sized
defect) were created in the trochlear groove of the femur by
careful drilling in a vertical direction. To avoid thermal denatur-
ation, we applied normal saline irrigation while making the de-
fects with the motorized drill. After removing cartilage and bone
debris, the boundaries of the drilled holes were trimmed using a
surgical knife, and the defect sites were carefully washed. A
composite of hUCB-MSCs (0.5 � 107 cells/mL) and 4% HA hydrogel
was transplanted into the full-thickness defect in the experi-
mental knee (right knee), whereas 4% HA hydrogel without
hUCB-MSCs was transplanted into the control knee (left knee)
(n ¼ 10 for evaluation after 8 weeks, n ¼ 10 for evaluation after 16
weeks). The defect was left untreated as a control (n ¼ 5 for 8
weeks and n ¼ 5 for 16 weeks). For cell tracking evaluation at 2
and 4 weeks, a composite of hUCB-MSCs (0.5 � 107 cells/mL) and
4% HA hydrogel was transplanted into both knees (n ¼ 5 for 2
weeks and n ¼ 5 for 4 weeks). Following transplantation, patellae
were re-located, and the soft tissues were closed in layers. All
rabbits were allowed to move their knee joints freely in their
cages without restriction, and clinical signs were observed daily.
Animals were sacrificed at 8 and 16 weeks post-transplantation
to evaluate articular cartilage repair (10 rabbits at 8 weeks and
10 at 16 weeks); some were instead sacrificed at 2 and 4 weeks to
evaluate the fate of transplanted cells (5 rabbits at 2 weeks and 5
at 4 weeks). No animal was excluded owing to an abnormal
clinical finding.
ased cartilage repair in a rabbit model: cell tracking and in vivo
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Macroscopic evaluation

An arthrotomy was performed post-mortem in the same
manner as during transplantation to re-inspect the intra-articular
structure. The condition of the structure was assessed; we looked
for evidence of rejection or infection, severe inflammation, exten-
sive fibrosis, or any other abnormality in the joint. Then, the degree
of articular cartilage repair was grossly assessed using the Inter-
national Cartilage Repair Society (ICRS) macroscopic evaluation
system28. The parameters included degree of defect repair, inte-
gration into the border zone, and macroscopic appearance.

Histological and immunohistochemical evaluation

Full-thickness samples (cartilage and bone) were taken from
each group at 8 and 16 weeks post-transplantation for histological
analysis. The samples were fixed in 10% formalin, decalcified in
Immunocal™ (Decal Corp., Tallman, NY, USA) for 3 days, dehy-
drated in a graded ethanol series, and embedded in paraffin wax.
The paraffin-embedded sections (4 mm) were cut, deparaffinized,
and stained with hematoxylin and eosin (H & E) staining, Masson's
trichrome, Safranin-O, and Sirus red, and subjected to immuno-
histochemistry for type-II collagen. Detailed descriptions of the
staining are provided in the online Supplemental material.

The sections were semi-quantitatively analyzed with a modified
O'Driscoll score29. The nature of the predominant tissue (cellular
morphology and safranin O staining of the matrix), structural
characteristics (surface regularity, structural integrity, thickness,
and extent of bonding to the adjacent cartilage), freedom from
cellular changes of degeneration (hypocellularity and chondrocyte
clustering) and freedom from degenerative changes in adjacent
cartilage were analyzed. All samples were scored independently by
two observers.

Cell tracking using anti-human nuclear antibody

Full-thickness samples were taken from each group at 2, 4, 8,
and 16 weeks post-transplantation for cell tracking analysis. The
paraffin was removed from the slides and the specimens were
rehydrated. The slides were washed three times with 0.5% Triton-
X100 in PBS for 15 min and then with proteinase K (Dako, Car-
pentaria, CA, USA) for 20 min. The slides were then washed three
timeswith 0.5% Triton-X100 in PBS for 5min and incubatedwith 2%
bovine serum albumin in PBS for 30 min. A mouse anti-human
nuclei monoclonal antibody (MAB1281; Chemicon, Temecula, CA,
USA) was applied to tissues, which were then incubated in a moist
chamber for 1 h, and washed three times with 0.1% Tween-20 in
PBS for 5 min. Anti-mouse IgG was applied and the slides were
incubated in a moist chamber for 1 h. The Slides weremounted and
scanned using ScanScope AT (Leica Biosystems Nussloch GmbH,
Nussloch, Germany). Human placental tissue was incubated with
mouse IgG after preprocessing the mouse anti-human nuclei
antibody in the positive control, whereas human placenta tissue
was incubated with mouse IgG without preprocessing the mouse
anti-human nuclei antibody in the negative control. Images were
captured by bright field microscopy at 20� microscopic magnifi-
cation, and five images from randomly selected visual fields were
captured from each slide for quantification. Human nuclei positive
cells were counted using Image J v1.45 software (http://rsb.info.nih.
gov/ij/) by three observers blinded to the samples.

Statistical analysis

The two-tailed ManneWhitney test was used to compare the
macroscopic and histological evaluations between the transplanted
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and control groups using SAS 9.3 software (SAS Institute, Cary, NC,
USA). A P-value < 0.05 was considered significant.

Results

Macroscopic findings

No abnormal findings suggesting rejection or infection, such as
severe inflammation or extensive fibrosis, were observed. The
experimental knees were more transparent and brighter in
appearance than were the control knees [Fig. 1(A) and (B)]. The
surfaces of the repaired tissue in the experimental knees were
relatively smooth and had fewer depressions compared to those in
the control knees. The repaired tissue filled the defect areas poorly,
and numerous spaces and cleavages were observed throughout the
repaired tissue in the control knees. The ICRS gross repair assess-
ment scores of the experimental knees at 8 and 16 weeks post-
transplantation were higher than those of the control knees [4.5
(95% confidence interval 2.4e6.6) in the control group vs 6.6 (95%
confidence interval 6.0e7.5) in the hUCB-MSCs group at 8 weeks;
P¼ 0.110, 5.0 (95% confidence interval 3.2e6.3) in the control group
vs 7.8 (95% confidence interval 7.1e8.4) in the hUCB-MSCs group at
16 weeks; P < 0.003, Fig. 1(C)]. In experimental knees, the surfaces
of the repaired tissue examined at 16 weeks compared to those
examined at 8 weeks showed fewer depressions and less distinct
borders with the normal surrounding articular cartilage [Fig. 1(A)
and (B)].

Histological and immunohistochemical findings

The defects repaired with the hUCB-MSCs and HA composite
exhibited a restoration of normal articular contours to the level of
the surrounding normal cartilage at 8 weeks post-transplantation
[Fig. 2(A) and (Ai)]. The deep portion of the repaired tissue was
not completely replaced by subchondral bone, which contributed
to the appearance of a thick cartilage layer at the repair site. The
cells in the repaired tissue were round with lacunae in the deep
portion but somewhat flat in the superficial zone [Fig. 3(A) and
(Ai)]. The border area was fully filled with repaired tissue without
any significant gaps [Fig. 2(A)]. The defects in the control knees
were also restored to the level of the surrounding normal tissues,
although a significant gap was noted in the border area. The cells in
the repaired tissue in control knees were smaller, with fewer
lacunae, and were not morphologically different in the deep and
superficial areas [Fig. 3(Ai)].

The overall architecture of the repaired tissue in the experi-
mental knees was similar to that of normal cartilage at 16 weeks
post-transplantation [Fig. 2(B)]. The deep areas were mostly
replaced by subchondral bone, and the articular surface was
smooth without any gaps with the surrounding normal articular
cartilage [Fig. 2(Bi)]. The cellular architecture and arrangement
were similar to those of the surrounding normal cartilage. Round
cells were grouped, had lacunae, and were perpendicular to the
subchondral bone in the deep zone, whereas flat cells were parallel
to the articular surface in the superficial zone [Fig. 3(B) and (Bi)].
The overall contours of the repaired tissue in the control knees was
restored at 16 weeks post-transplantation, but the surfaces of the
repaired tissue were irregular, and a significant gap was noted in
the border area [Fig. 2(B)]. The cells in the repaired tissue were
irregularly arranged and the deep repaired tissue had not been
replaced by subchondral bone, as it had in the experimental knees
[Fig. 3(Bi)].

Type II collagen immunohistochemical staining revealed weakly
positive staining in the repaired tissue of the experimental knees at
8 weeks post-transplantation, whereas the control knees were
ased cartilage repair in a rabbit model: cell tracking and in vivo
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Fig. 1. Gross appearance and assessment results of articular cartilage defects in a rabbit model at 8 and 16 weeks post-transplantation. (A): Experimental knees with hUCB-
MSCs þ HA, control knees with HA only, defect only, and normal knee without defect at 8 weeks. (B): Experimental knees with hUCB-MSCs þ HA, control knees with HA only, defect
only, and normal knee without defect at 16 weeks. (C): ICRS macroscopic cartilage repair assessment for hUCB-MSCs þ HA, HA only, and defect only (10 knees/group). Error bars
represent 95% confidence interval.
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negative for type II collagen [Fig. 4(A) and (Ai)]. Strong positive type
II collagen immunohistochemical staining was noted in the
repaired tissue of experimental knees at 16 weeks post-
transplantation [Fig. 4(B) and (Bi)], and its density was similar to
that of the surrounding normal cartilage. The repaired tissues in the
control knees were weakly positively stained, compared to the
surrounding normal cartilage tissue [Fig. 4(A) and (B)].

Safranin-O staining revealed chondral differentiation in the
repaired tissue. Denser and more reddish staining was noted,
without a remarkable gap, in the repaired tissue of experimental
knees, whereas less red repaired tissuewas observed and there was
a remarkable gap in control knees [Fig. 5(A), (Ai), (B) and (Bi)]. The
overall collagen arrangement, as shown by Sirius Red staining in
the repaired tissue of the experimental knees, was nearly identical
to the that of the surrounding normal cartilage tissue (Fig. 6). Most
of the collagen fibers were arranged perpendicularly, whereas
those in the superficial area were horizontal and parallel to the
articular cartilage.

The semi-quantitative O'Driscoll score analysis revealed that the
repaired tissue in the experimental knees was histologically supe-
rior to that in the control knees (Fig. 7). At 16 weeks post-
transplantation, the scores from experimental knee were statisti-
cally higher overall (10.7 (95% confidence interval 9.6e11.9) in
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controls vs 16.9 (95% confidence interval 15.6e18.2) in hUCB-MSCs-
treated knees; P < 0.001, and 11.6 (95% confidence interval
10.4e12.6) in HA-treated knees vs 16.9 in hUCB-MSCs-treated
knees, P < 0.001).

The track of the grafted cells was evaluated by immunohisto-
chemistry using anti-human nuclei antibody after transplanting
the cells in the articular cartilage defect region. Anti-human nuclei
antibody levels decreased gradually at 2, 4, and 8 weeks post-
transplantation [Fig. 8(A)e(C)]. After 16 weeks, anti-human nuclei
antibody staining had disappeared [Fig. 8(D)]. The number of hu-
man nuclei-positive cells decreased as time went by (1,296.2 (95%
confidence interval 1,125.7e1,466.7) at 2 weeks, 538.4 (95% confi-
dence interval 334.2e742.6) at 4 weeks, and 128.4 [95% confidence
interval 74.9e181.9) at 8 weeks; Fig. 8(E)]. No signal was detected in
the negative control tissue [Fig. 8(F)].

Discussion

Here, we demonstrated that an hUCB-MSCs and 4% HA hydrogel
composite resulted in favorable cartilage repair grossly and histo-
logically compared to HA only treatment and no treatment in a
rabbit model. The repaired tissue following hUCB-MSCs and HA
transplantation was more similar to the surrounding normal
ased cartilage repair in a rabbit model: cell tracking and in vivo
em cells and hyaluronic acid hydrogel composite, Osteoarthritis and
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Fig. 2. Microscopic findings of the repair tissue at articular cartilage defect sites in a rabbit (10 knees/group). (A): H & E staining at 8 weeks; �12.5. Scale bars ¼ 1 mm. (B): H & E
staining at 16 weeks; �12.5. Scale bars ¼ 1 mm. (Ai, Bi): Higher magnification views of the areas boxed in (A, B) respectively; �40. Scale bars ¼ 200 mm.

Fig. 3. Microscopic findings of the repair tissue at articular cartilage defect sites in a rabbit (10 knees/group). (A): Masson's trichrome stain at 8 weeks; �12.5. Scale bars ¼ 1 mm. (B):
Masson's trichrome stain at 16 weeks; �12.5. Scale bars ¼ 1 mm. (Ai, Bi): Higher magnification views of the areas boxed in (A, B) respectively; �40. Scale bars ¼ 200 mm.
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articular cartilage than was the repaired tissue in the controls (HA
alone or defect only). The transplanted cells disappeared from the
repaired tissue over time, which seems to support paracrine action
rather than chondrogenic differentiation of the transplanted MSCs.
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Transplanting an hUCB-MSCs and HA hydrogel composite
repaired full thickness cartilage defects, as was evidenced both
qualitatively and quantitatively. At 16 weeks post-transplantation,
cellular architecture and collagen arrangement were almost
ased cartilage repair in a rabbit model: cell tracking and in vivo
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Fig. 4. Microscopic findings of repair tissue at the articular cartilage defect sites in a rabbit (10 knees/group). (A): Type II collagen immunostaining at 8 weeks; �12.5. Scale
bars ¼ 1 mm. (B): Type II collagen immunostaining at 16 weeks; �12.5. Scale bars ¼ 1 mm. (Ai, Bi): Higher magnification views of the areas boxed in (A, B) respectively; �40. Scale
bars ¼ 200 mm.

Fig. 5. Microscopic findings of repair tissue at the articular cartilage defect sites in a rabbit (10 knees/group). (A): Safranin-O staining at 8 weeks; �12.5. Scale bars ¼ 1 mm. (B):
Safranin-O staining at 16 weeks; �12.5. Scale bars ¼ 1 mm. (Ai, Bi): Higher magnification views of the areas boxed in (A, B) respectively; �40. Scale bars ¼ 200 mm.
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Fig. 6. Microscopic findings of repair tissue at the articular cartilage defect sites in a rabbit (10 knees/group). (A): Sirius Red staining at 8 weeks; �40. Scale bars ¼ 200 mm. (B):
Sirius Red staining at 16 weeks; �40. Scale bars ¼ 200 mm. (Ai, Bi): Higher magnification views of the areas boxed in (A, B) respectively; �100. Scale bars ¼ 100 mm.

Fig. 7. Semiquantitative analysis of repair tissue at the articular cartilage defect sites in rabbit knee at 8 and 16 weeks (10 knees/group). Sections were histologically evaluated based
on a modified O'Driscoll score). Error bars represent 95% confidence interval.
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identical to those of the surrounding normal articular cartilage
tissue, and the repaired tissue contained a considerable amount of
type II collagen. The repaired tissue maintained a rather smooth
surface contour without notable gaps with the surrounding normal
articular cartilage. The deep portion of the repaired tissue was
replaced by subchondral bone. These findings supported the bone
and cartilage regeneration potentials of hUCB-MSCs. The trans-
planted cells in the defect site disappeared gradually. Other studies
have investigated the fate of transplanted or injected MSCs in full-
thickness cartilage defects or animal osteoarthritis models11,26.
These studies showed that labeled transplanted MSCs disappear
gradually in repaired tissue with time after transplantation. One
study reported that transplanted hUCB-MSCs are detectable 4 but
not 8 weeks after transplantation26. These results are in agreement
with our results. The transplanted cells were detectable in the
repaired tissue until 8 weeks, but were hardly detectable in the
repaired tissue at 16 weeks. Another study reported that the
number of transplanted cells disappears gradually, but they are
detectable in the cartilage zone at 24 weeks post-transplantation11.
This long-term observation of transplanted cells does not agree
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with our results. One possible explanation for the disappearance of
the cells is that immune responses after allogeneic or xenogeneic
transplantation could lead to clearance of the transplanted MSCs.
However, we did not observe any rejection or inflammation-like
responses. In addition, the hUCB-MSCs have low immunogenicity
and are immunomodulatory in vitro and in vivo5,7,30.

The cartilage repair mechanism in this study may be associated
with chondrogenic differentiation, the paracrine action of hUCB-
MSCs, and their immunomodulatory effects. Several studies have
reported that hUCB-MSCs retain chondrogenic differentiation po-
tential10,15,20,25,31. The hUCB-MSCs used in this study also showed
multi-lineage differentiation potential in vitro (data not shown).
Besides chondrogenic differentiation of hUCB-MSCs, an unidenti-
fied paracrine action between the transplanted hUCB-MSCs and the
host may have stimulated chondrogenic differentiation or
enhanced cartilage-specific extracellular matrix synthesis by MSCs,
as suggested previously32e34. One study reported that hUCB-MSCs
promote differentiation of chondroprogenitor cells via a paracrine
action26. In this study, transplanted cells gradually disappeared
until 16 weeks after transplantation, which seem to indicate that a
ased cartilage repair in a rabbit model: cell tracking and in vivo
em cells and hyaluronic acid hydrogel composite, Osteoarthritis and

User
강조

User
강조



Fig. 8. Cell tracking images using anti-human nuclear antibody staining at 2, 4, 8, and 16 weeks post-transplantation (10 knees/week). (A): 2 weeks. (B): 4 weeks. (C): 8 weeks. (D):
16 weeks; X Fit. Scale bars ¼ 6 mm. (Ai, Bi, Ci, Di): Higher magnification views of the areas boxed in (AeD) respectively; �4. Scale bars ¼ 500 mm. (E): Quantification of human
nuclei staining in cartilage sections. (F): As a negative control, human kidney tissues were incubated in mouse IgG instead of the mouse anti-human nuclei monoclonal antibody.
(F): Positive controls were incubated with anti-human nuclei monoclonal antibody. Error bars represent 95% confidence interval.

Y.B. Park et al. / Osteoarthritis and Cartilage xxx (2016) 1e118
paracrine interaction between hUCB-MSCs and subchondral pro-
genitor cells may play an essential role in cartilage regeneration.
The immunomodulatory properties, particularly the anti-
inflammatory effect of hUCB-MSCs, could provide suitable condi-
tions in which the transplanted hUCB-MSCs produced more rele-
vant repair tissue, even in a xenograft trial with immunocompetent
animals35. Further studies are required to elucidate the details of
the cartilage repair mechanism of hUCB-MSCs.

HA hydrogel provides several advantages as a scaffold for
cartilage repair. The material used for successful cartilage repair
should have appropriate viscoelastic properties, such as compres-
sive strength, friction, and tensile strength, to bear the deformation
and motion forces36. The mechanical strength of HA is approxi-
mately 29e149 KPa37,38. In addition, HA hydrogel can maintain
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transplanted cells at the site of the defect rather than allowing
them to disperse. Therefore, HA can be a good scaffold and provide
the proper environment for chondrogenesis. Previous studies have
demonstrated that HA may inhibit inflammatory factors, reduce
cartilage degradation, and suppress interleukin-1b-induced
apoptosis of chondrocytes39e41. Furthermore, intra-articular HA has
been approved for clinical use, promotoes cartilage regeneration,
and has a role as a delivery vehicle in vivo42. Taken together, HA
improves the microenvironment in articular cartilage defect sites;
thus, enhancing the cartilage repair process following cell
transplantation.

In this study, we tried to evaluate the effect of hUCB-MSCs on
cartilage repair in a rabbit model. We have been investigating
cartilage regeneration potential of hUCB-MSCs and HA hydrogel
ased cartilage repair in a rabbit model: cell tracking and in vivo
em cells and hyaluronic acid hydrogel composite, Osteoarthritis and
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composite and attained remarkable results in a rat model18,19. In a
rat model, hUCB-MSCs with 4% HA hydrogel showed superior
cartilage repair grossly and histologically compared to control
groups (HA only and defect). The MSCs used in a rat model was
prepared by same goodmanufacturing practice at an approved cord
blood bank and donated. Although the cells used for the rat studies
were not from the same donor for the present rabbit study, we
reached the same conclusion even the hUCB-derived MSCs from
different donors were used. The cells used for the rat studies were
also selected by the same way we mentioned in the Methods sec-
tion of the present study, i.e., cells with good proliferation and
differentiation potentials, not based on the donor characteristics.
Although we recently set the selection criteria based on the TSP-2
secretion level of the MSCs population based on the results of
later studies26,27, this criteria (based on the proliferation and dif-
ferentiation) for selecting the cells worked well for the rat and
rabbit studies, although the cells were not from the same donor.
The results of the present study shows effective cartilage repair
even in a larger animal model. These consistent results in animal
models warrant further investigations for a human clinical trial in
the future.

Some limitations of this study need to be addressed. First, the
MSCs used in this study were at passage 6, which may be a fairly
high passage number. To acquire the hUCB-MSCs used in this
study, a cryopreservation and thawing process was necessary.
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Before cryopreservation, the MSCs isolated from hUCB were
cultured to passage 3. To obtain sufficient numbers of hUCB-MSCs
after thawing, an additional 3 passages were required. However,
UCB-MSCs are known to have a highly capacity for expansion
compared to BM-MSCs43, and the hUCB MSCs at the high passage
number used in the present study demonstrated good activity.
Based on the results of this study, hUCB-MSCs at passage 6 seem to
be suitable for transplantation to treat cartilage defects. Second,
the study period of 16 weeks may be short. In another study of
ours, however, repaired tissues with an hUCB-MSCs and HA
composite at 52 weeks were similar to those at 16 weeks as
assessed by the O'Driscoll score (unpublished data) and did not
display overgrowth, osseous metaplasia, or tumor formation.
Many previous studies done to evaluate cartilage repair using a
rabbit model have analyzed tissues at periods of less than 16
weeks44e47. Thus, we chose 16 weeks as the end point to evaluate
the efficacy of cartilage repair following hUCB-MSCs trans-
plantation. Third, as we performed the present study with only
one dose of cells, the findings that the cells gradually disappeared
over the course of 16 weeks cannot be generalized to different
doses. Based on the results of our previous animal studies, how-
ever, we believe that transplanted cells will gradually disappear
when administered at different doses. Finally, the mechanism by
which MSCs enhanced cartilage repair remains unclear. It remains
to be determined whether the transplanted MSCs restored
ased cartilage repair in a rabbit model: cell tracking and in vivo
em cells and hyaluronic acid hydrogel composite, Osteoarthritis and
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cartilaginous tissue directly by chondrogenic differentiation, or
whether they supported the cartilage restoration by host cells.
These issues should be further investigated in future studies.

In conclusion, we showed that hyaline cartilage can be repaired
using a composite of hUCB-MSCs and HA hydrogel. The cellular
architecture, collagen arrangement, and quantity of type II collagen
in the repaired tissue were very similar to those of the surrounding
normal hyaline cartilage. Although further studies are needed to
elucidate the precise underlying mechanisms of action, the finding
that the transplanted cells disappeared at the defect site indicates
that a paracrine interaction between hUCB-MSCs and host cells
plays an essential role in cartilage repair. These findings suggest
that transplanting hUCB-MSCs and 4% HA hydrogel composite may
be a novel therapeutic modality to treat full-thickness cartilage
defects. The system used in the present study may be of use to
optimize conditions before attempting to repair cartilage defects in
humans using such composites.
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